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Chapter 1 

Introduction 

Due to the challenges of the underwater ocean environment, minimal progress has 

been made in the field of covert underwater acoustic communications. In some appli

cations, low data rates would be an acceptable tradeoff for a sufficiently low probabil

ity of detection. Current robust underwater acoustic communication systems rely on 

a relatively high Signal-to-Noise Ratio (SNR) that precludes a covert posture. Ma

rine biologics provide a significant source of background noise that any underwater 

acoustic communications system needs to overcome. However, if the communications 

scheme was able to mimic marine biologics in their natural environment, a covert 

posture may be retained while operating at a relatively high SNR. 

Marine mammal whistle calls are an attractive medium for masking underwater 

acoustic communications due to their low frequency range, relatively sustained du

ration and regular harmonic structure. High-quality synthetic models are needed to 

effectively mimic marine mammal whistle calls with an embedded information signal. 

This thesis focuses on developing techniques for processing and embedding informa

tion in bottlenose dolphin whistle calls, but the techniques derived are applicable to 

other harmonically-structured tonal signals, including other marine mammal whistle 

calls. 

15 



1.1 Prior Work 

1.1.1 Classification of Bottlenose Dolphin Whistle Calls 

, 
Christian [9] compiled a database of bottlenose dolphin whistle calls for his research 

on using generic signal compression for the identification, characterization and repeti

tion detection of various signals. His approach estimated the fundamental frequency 

contour of a whistle call, recorded with a nominal 50 kHz sample rate, using 512 

point blocks with no overlap, as higher resolution was not considered necessary. He 

compared the periodogram and Burg's autoregressive (AR) methods of spectral es

timation, and concluded that the periodogram provided sufficient resolution of the 

fundamental frequency when compared to the computationally expensive Burg tech

nique. Five major spectral peaks from each block were retained from which a tracking 

algorithm resolved the fundamental frequency contour. A 16-dimension coding space 

was then developed using the fundamental frequency contour to generate a dictionary 

of unique whistles. Single dolphins were found to reproduce their signature whistles 

very precisely, and were estimated to be capable of producing over a billion unique 

whistles. 

1.1.2 Prior Models of Bottlenose Dolphin Whistle Calls 

Although some methods used in human speech analysis and synthesis have been 

tested on marine mammals [3, 46], Buck et al. [5, 24] have been behind the effort 

to model bottlenose dolphin whistle calls for synthesis and modification purposes. A 

parametric model that can synthesize natural-sounding whistles can be used to study 

how dolphins communicate by modifying the whistle frequency contour and observing 

the response of dolphins. 
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Weighted Superposition of Sinusoidal Harmonics 

Buck et al. [5] initially proposed a whistle model characterized as the weighted su

perposition of harmonically related sinusoids, 

R 

s[nJ = L ar[nJ sin(27r¢r[n]) (l.1 ) 
r=l 

which embodies their typical description as frequency-modulated tonal calls. The 

fundamental frequency contour is extracted using a peak-picking algorithm detailed 

in [6]. which was found to work well for recordings of individual animals at high 

SNR. The signal is broken into short blocks for which it is assumed to be relatively 

constant in amplitude and frequency. Frequency and energy contours for each har

monic are constructed from analyzing each block. Different modification strategies 

are proposed that modify different characteristics of the frequency and energy con

tours. Finally, whistles are synthesized at the original sample rate by interpolating 

phase and amplitude contours from the compressed frequency and energy contours. 

This technique differed from other speech processing algorithms [2, 46, 64] primarily 

in that discrete-time upsampling was performed instead of linear or polynomial inter

polation between blocks. Example whistles recorded at 8l.92 kHz were synthesized 

using a block length of 512 samples with 50% overlap. Human testing could dis

tinguish between the original and unmodified synthetic whistles using quarter-speed 

in-air playbacks. The synthetic whistles were characterized as "clean sounding" and 

"not enough noise" when compared to the original whistles. 

Autoregressive Model 

Based on the distinct perceptual differences between original dolphin whistles and 

their synthetic counterparts produced with the sinusoidal model, Buck's student 

Huang [24] proposed using an AR synthesis model to generate more natural-sounding 

synthetic whistles. The whistle was broken into blocks of length 512 samples with 

17 



75% overlap, which are smoothly recombined during synthesis using a half-amplitude 

Hamming window. Each block was then modeled using a high order (p = 60) AR 

model. It was noted that the signal residue power spectrum Fontained a noticeable 

component of the original frequency contour. For each block, the resulting system 

poles were compared to the frequency contour used in the sinusbidal model for select

ing signal poles corresponding to each harmonic. The whistles are then synthesized 

by driving the corresponding all-pole filter for each block with the signal residue for 

unmodified whistles and a white noise residue for modified whistles. While the AR 

synthesis whistles sounded more "natural" than the cleaner sinusoidal synthesis whis

tles, a study has not been performed to assess the overall quality of the AR synthesis 

whistles. Some problems encountered were the high computational load and the need 

to choose algorithm parameters such as block length, amount of overlap and AR 

system individually for each dolphin whistle. 

1.1.3 Related Work in Human Speech Processing 

Generally, human speech processing has focused on a stochastic model for speech 

production that seeks to design filters that imitate the physical dynamics of speech [15, 

41]. These filters are then driven by combinations of two basic forms of excitation, 

periodic impulses for voiced speech and white noise for unvoiced speech. Linear 

prediction analysis is usually used to design all-pole filters that describe short blocks 

of similar speech patterns. Cepstral analysis was developed to separate the impulse 

response of the vocal system model from the excitation sequence, but its application 

is limited based on its computational complexity. 

The basic sinusoidal superposition model in Eq. (1.1) used by Buck et al. [5] 

has been researched in human speech processing with excellent results. Serra and 

Smith [64] note that additive synthesis algorithms were among the first techniques 

used in computer-based synthesis, with the introduction of the heterodyne filter in 

the early 1970's, followed by the digital phase vocoder. McAulay and Quatieri [46, 53] 
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Figure 1-1: Quatieri and McAulay's speech production model [53J 

and Smith and Serra [65J developed similar algorithms at about the same time that 

addressed inharmonic and pitch-changing sounds. Essentially, each algorithm used 

the same sinusoidal model while developing new methods to track relevant frequency 

contours and smoothly vary amplitude and phase from block to block. The signal 

was broken into analysis blocks, with overlap ranging from 50% to 75%, and relevant 

frequencies selected based on peaks in the discrete Fourier transform. McAulay and 

Quatieri included a time-varying filter model of the vocal tract at the output of the 

sinusoidal representation, as seen in Fig. 1-l. For a variety of sounds, including some 

whale sounds, their algorithm was reported to produce synthetic signals "essentially 

perceptually indistinguishable" from the original signal. Serra and Smith [64] up

dated their algorithm to better incorporate noise-like aspects of speech by removing 

the sinusoidal representation from the original signal and then applying stochastic 

modeling to the residual, but found that combining the sinusoidal and stochastic 

components sometimes produced undesirable results. The deterministic plus stochas

tic model was refined by Levine [36] by further decomposing the stochastic component 

into a quasi-stationary "noise" part and a rapidly changing "transient" part, resulting 

in a coding scheme that is both efficient and expressive [38]. 
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and. Smith and Serra [65] developed similar algorithms at about the same time that 

addressed inharmonic and pitch-changing sounds. Essentially, each algorithm used 

the same sinusoidal model while developing new methods to track relevant frequency 

contours and smoothly vary amplitude and phase from block to block. The signal 

was broken into analysis blocks, with overlap ranging from 50% to 75%, and relevant 

frequencies selected based on peaks in the discrete Fourier transform. McAulay and 

Quatieri included a time-varying filter model of the vocal tract at the output of the 

sinusoidal representation, as seen in Fig. 1-1. For a variety of sounds, including some 

whale sounds, their algorithm was reported to produce synthetic signals "essentially 

perceptually indistinguishable" from the original signal. Serra and Smith [64] up

dated their algorithm to better incorporate noise-like aspects of speech by removing 

the sinusoidal representation from the original signal and then applying stochastic 

modeling to the residual, but found that combining the sinusoidal and stochastic 

components sometimes produced undesirable results. The deterministic plus stochas

tic model was refined by Levine [36J by further decomposing the stochastic component 

into a quasi-stationary "noise" part and a rapidly changing "transient" part, resulting 

in a coding scheme that is both efficient and expressive [38J. 
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1.2 Introduction to Information Hiding 

The field of information hiding [11, 27] has largely grown out of the field of cryp-
~ 

tography to include the additional aspect of keeping the existence of the information 

secret. A lot of the techniques that are used in information l,liding draw upon the 

experience gained from cryptography, and in many cases the lines between the two 

are blurred, since any cryptographic system would be more robust to attack if its very 

existence was a secret. However, the practical wisdom of cryptography teaches that 

sensitive information should also be protected by a secret key, to safeguard against 

the information hiding techniques being discovered [50]. In general, information hid

ing techniques can be divided into four categories, which either include or exclude 

the separate principles of steganography and watermarking based on their applica-

tion, [ll]. 

1.2.1 Steganography 

Steganography is the art of concealed communication, in which the very existence of 

a message is secret [ll]. Most applications of steganography follow the same general 

principle [26] described as follows. Alice, who wants to share a secret message Tn 

with Bob, randomly chooses a harmless message c, called cover-object, which can 

be transmitted to Bob without raising suspicion. With the potential use of a secret 

key k, a stego-object s is generated by embedding Tn into c in a careful way so that 

a third party cannot detect the existence of a secret in the apparently harmless 

message s. Alice then transmits s to Bob over an insecure channel, hoping that 

Wendy, a suspicious person with access to s, will not notice the embedded message. 

Bob can reconstruct Tn, since he knows the embedding method used by Alice and 

has access to the key k used in the embedding process. The extraction of Tn from 

s should be possible without access to the original cover c. In a "perfect" system, 

a normal cover should be indistinguishable from a stego-object, either by a human 
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or computer looking for a statistical pattern. There are basically three types of 

steganographic protocols that differ based on the choice of k. Pure steganography 

does not incorporate the prior exchange of secret information,i'so a key is not used in 

the embedding process. Secret key and public key steganography bolster security by 

using a secret or public key in the embedding process, although both use a secret key 

to reconstruct the secret message [26]. 

1.2.2 Watermarking 

'Watermarking, while closely related to steganography, is based on different underlying 

philosophies, requirements, and applications that result in techniques that clearly 

distinguish themselves from steganography. Essentially, the purpose of a watermark 

is to embed self-identifying information within a cover-object that can be used for 

copyright protection or tracking purposes. While the existence of a watermark does 

not normally need to be kept secret, the watermark should be permanently attached 

to the cover-object. Thus, watermarking has the notion of being robust to both 

malicious and benign attacks to remove the identifying information. In practical 

commercial applications, the watermark should be perceptually transparent enough 

to not annoy consumers or reduce the value of the product [32]. 

1.2.3 Applicable Digital Audio Watermarking Techniques 

';Yatermarking of digital audio signals is more challenging compared to watermarking 

image or video sequences due to the wide dynamic range of the human auditory 

system (HAS). The HAS perceives sounds over a range of power greater than 109 : 1 

and a range of frequencies greater than 103 : 1. In particular, the HAS has a high 

sensitivity to additive white Gaussian noise, which can be detected as low as 80 dB 

below ambient level in a sound file. However, there are some "holes" available in 

which to place a watermark. While the HAS has a wide dynamic range, it has 

a small differential range, meaning loud sounds generally tend to mask out quiet 
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sounds. Additionally, the HAS is insensitive to a constant relative phase shift in a 

stationary audio signal. Finally, some environmental distortions are so common that 

they are ignored by the listener in most cases [4, 12]. 

Due to the sensitivity of the HAS, digital audio watermarking techniques apply 

directly to steganographic applications, since on a perceptual basis the existence of 

an embedded message needs to be kept a secret. In a covert communications scenario, 

the robustness against intentional attacks is not usually required, although signal pro

cessing modifications, channel-induced signal distortion and additive ambient noise 

should not prevent retrieval of the watermark. In these applications, the watermark is 

expected to achieve a higher data rate and use blind detection schemes for watermark 

detection and reconstruction [12]. 

Fig. 1-2 shows a basic model depicting watermarking as a communications pro

cess, as described by He and Scordilis [23]. A secret message is modulated into a 

watermark waveform using a secret key. The watermark is embedded imperceptibly 

into a host signal to form the stego-signal. Transmission through a channel adds 

noise and distortion to the stego-signal. The watermark detector reconstructs the 

watermark from the received signal using the secret key, and in some cases, the host 

signal. Blind detection, in which the host signal is not available, is more flexible in 

operation, but lowers the achievable data rate by making detection more complex. 

In the underwater channel, the primary sources of distortion are multipath arrivals 

and Doppler spreading [29, 51]. In order to combat these effects and maintain the 

fidelity of the stego-signal, the best watermarking scheme appears to be based on 

slight modifications of the fundamental frequency contour that result in natural

sounding stego-signals. Liu [38] has focused on a parametric approach to digital 

audio watermarking that is heavily based on the sinusoidal synthesis model and the 

work of Smith, Serra and Levine [36, 64]. Fig. 1-3 shows the watermarking scheme 

based on parametric analysis and synthesis proposed by Liu [38]. To embed a binary 

watermark W, the host signal is first decomposed into 8 = 810) + r, where 810) is 
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Figure 1-2: Communication model for watermarking [23] 

Secret 
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perfectly parameterized and r is a residual orthogonal to sIB). Then, the parameter 

set 1&) is modified to 1&*) to carry the watermark T¥. The new signal sIB*), constructed 

from the watermarked parameter set, is combined with r to form the stego-signal x 

which is transmitted through a channel with unknown noise and distortion. Upon 

the reception of a corrupted copy y, parameters are estimated so as to decode VV. 

The attempt at watermarking is successful if the estimated parameters Ie) are close 

enough to 1&*) such that the decoded binary message TV is identical to W. There is an 

inherent tradeoff when determining how & is modified to &*: the modification should 

be small enough to not introduce perceptible distortion, but it should also be as big as 

possible to maximize robustness against attacks. In the case of a digital audio signal, 

the parametric component SIB) matches the sinusoidal model perfectly and receives 

the watermark. while the stochastic component r is removed during watermarking 

but then added back in for transmission to minimize perceptible alteration from the 

host signal s. 

Chen and Wornell [8] designed a class of digital watermarking techniques called 

quantization index modulation (QIM) that were shown to reach or nearly reach em

bedding rate capacity for important classes of models. However, this simplest form 
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Figure 1-3: Parametric watermarking scheme [38] 

of QIM was not robust to amplitude scaling, which is a common operation in music 

processing. Liu is currently working on the development of a F-QIM watermarking 

scheme that applies QIM techniques to the frequency parameters in the sinusoidal 

synthesis model [38J. 

Krishnan et al. have proposed a watermarking scheme based on joint time fre

quency analysis of the audio signal [30]. Most of the other watermarking techniques 

analyze audio in either the time or frequency domains separately, which does address 

the nonstationarity of audio signals. Krishnan et al. calculate the instantaneous mean 

frequency (IMF) of the audio signal using the Wigner-Ville distribution (WVD). The 

WVD is a time frequency distribution that gives a clear picture of the instantaneous 

frequency and group delay of a signal, but suffers from confusing artifacts when the 

signals are multicomponent [10]. The IMF for short blocks of the signal is deter

mined, and then a spread spectrum watermarking scheme is implemented; to recover 

the watermark the IMF for the original signal is needed. Krishnan et al. also propose 

a chirp based spread spectrum watermarking scheme that reduces the complexity 

of watermark detection relative to the IMF scheme. The detector extracts the wa-

termarking bits and uses the WVD and a chirp detection algorithm to decode the 

watermark [30]. 
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1.3 Objectives 

This thesis proposes a new approach for determining the parameters of the sinusoidal 

superposition model of Eq. (1.1) to represent recorded marine mammal whistle calls. 

To achieve high quality results, the recordings are assumed to consist solely of tonal 

whistle calls at high SNR produced by a single animal, without contamination by high 

frequency clicks. A new method for tracking the nonlinear fiuctuations in a whistle 

call's fundamental frequency contour is developed based on the structured total least 

squares method. Amplitude contours for each harmonic are then determined using 

the estimated fundamental frequency contour and Prony's method. Different meth

ods of watermarking the fundamental frequency contour are examined in terms of 

human imperceptibility and complexity of watermark reconstruction in the underwa

ter environment. Experimental data is presented demonstrating the ability to track a 

whistle's fundarnental frequency contour in an underwater communications scenario. 

In summary, the ability to communicate at low data rates using a natural-sounding 

synthetic marine mammal whistle call is demonstrated. 

1.4 Organization 

The remainder of this thesis consists of five chapters. Chapter 2 develops the pro

gression of linear prediction techniques to model exponentially damped sinusoidal 

data. Chapter 3 describes a new approach to estimate the frequency and amplitude 

contours of chirp signals. Simulation results demonstrate the performance of the new 

approach, and other frequency estimation methods are compared to the structured 

total least squares method. Chapter 4 applies the results of Chapter 3 to building 

synthetic bottlenose dolphin whistle calls and examines different approaches to wa

termarking synthetic whistles. Chapter 5 presents data from a shallow water ocean 

experiment testing watermarked chirps and synthetic whistle calls. Finally, Chapter 6 

closes with conclusions and indicates future directions for research. 
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Chapter 2 

Sinusoidal Modeling Using Linear 

Prediction 

The term linear prediction as a method for time series analysis dates back to Wiener 

in 1949 [41, 74]. Since then, it has been widely applied in many fields for the modeling, 

parameterization, prediction, and control of dynamic systems and signals [42], and 

has been used in speech analysis and synthesis since 1966 [41]. Generally, the work 

focuses on discrete stochastic models of autoregressive (AR) systems whose value at 

any point in time is a linear combination of a finite number of past samples plus 

additive noise. Signals are parameterized in the linear prediction or autoregressive 

coefficients, and can then be synthesized by driving a corresponding all-pole filter 

with white noise [15, 21, 42]. Spectral estimation is performed by fitting an AR 

model to the data's autocorrelation sequence and transforming into the frequency do

main. Although it is not a spectral estimation technique, Prony's method has a close 

relationship to the least squares linear prediction algorithms used for AR parameter 

estimation. In contrast to AR methods that seek to fit a random model to the second 

order statistics, the modern version of Prony's method seeks to fit a deterministic ex

ponentially damped sinusoidal model to the data [43]. Based on the sustained tonal 

characteristic of a marine mammal whistle call, applying a deterministic sinusoidal 
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model is an intuitive starting point for estimating whistle call frequency contours. 

2.1 Prony's Method 

Gaspard Riche, Baron de Prony's paper [14,43] proposed in 1795 a method for exactly 

fitting damped exponentials to available data points for his research on the expansion 

of various gases. The modern form of Prony's method generalizes to identifying the 

amplitudes Ab damping factors O'b sinusoidal frequencies fb and initial phases Bk of 

a linear combination of complex exponentials, 

p 

x[n] = I:Akexp[(O'k+j27Tfk)(n-1)T+jBk] (2.1 ) 
k=l 

for 1 S n S p, where T is the sample interval. In the case of rea1 data, the complex 

exponentials must occur in complex conjugate pairs of equal amplitude, reducing 

Eq. (2.1) to 

p 

x[n] = I: 2Ak exp[( O'k( n - 1 )T] COS[27T fk( n - l)T + Bk] 
k=l 

Eq. (2.1) can be written in the form 

p 

x[n] = I: hkZ~-l 
k=l 

where the complex constants hk and Zk are defined as 

hk = Ak exp(jBk) 

Zk = exp[(O'k + j27Tfk)T] 
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(2.2) 

(2.3) 

(2.4) 

(2.5) 



Expressing Eq. (2.3) in matrix form as a set of simultaneous equations for 1 :S n :S p 

results in 
~o ",0 0'0 hI x[l] "'J ~2 ~p 

~J ",1 ",1 
h2 x[2] ""1 "'2 ~p 

(2.6) 

p-I p-J ",p-1 
hp x[p] Z1 Z2 ~p 

Prony discovered a method to separately solve for the exponential Zk elements, from 

which Eq. (2.6) can then be solved for the vector of unknown constants hk . Ap

pendix A shows that Eq. (2.3) is the solution to a homogeneous constant-coefficient 

difference equation 
p 

~ w[rn]x[n - rn] = 0 ) (2.7) 
m=O 

where 1O[rn] are the coefficients of the polynomial 4;(z) with roots Zk, 

p p 

¢(z) = IT (z - Zk) = zP + ~ 10 [rn]zp-m (2.8) 
1.'=1 m=l 

The p equations for which Eq. (2.7) is valid, p + 1 :S n :S 2p, can be expressed in 

matrix form as 

x[p] x[p - 1] 

x[p + 1] x[p] 

x[2p - 1] x[2p - 2] 

x[l] 

x[2] 

x[P] 

10[1] 

10[2] 

1O[p] 

x[p+ 1] 

x[p + 2] 

x [2p] 

(2.9) 

Prony's method to fit p exponentials to 2p data points can be summarized in three 

steps. First, Eq. (2.9) is solved to determine the coefficients of the polynomial 4;( z) 

in Eq. (2.8). Second, the roots Zk of 4;(z) are calculated. Third, Eq. (2.6) is solved to 

determine the parameters hk . 
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The desired parameters are then determined by the relationships 

Ctk = In IZkl/T 

fk = tan- 1 [Im{ zd / Re{ zd ]/21TT 

Ak = Ihkl 

Bk = tan-l[Im{hd/Re{hd] 

2.2 Least Squares Prony Method 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

In practical situations, the presence of some noise in the data sequence prevents 

obtaining an exact exponential fit to the data, so the number of data points N usually 

exceeds the 2p data points used in the original Prony method. In this overdetermined 

case, the data is approximated as an exponential sequence, 

p 

x[n] = L hkZ~-l (2.14) 
k=l 

for 1 ::; n ::; N, with observation error E[n] = x[n] - x[n]. Applying standard linear 

least squares (LS) procedures [19] to the original Prony method results in the three

step LS Prony method. First, forming the linear prediction relation 

Aw~b (2.15) 

x[P] x[p-l] x[l] w[IJ x[p + 1] 

A= 
x[p+ IJ x[P] x[2] w[2J 

, and b =-
x[p+2] 

W= , 

x[N -1] x[N -2] x[N p] w[P] x[N] 

the LS solution is given by 

(2.16) 
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Second, the roots Zk of ¢(z) in Eq. (2.8) are calculated. Third, the LS solution for 

the parameters hk is given by 

(2.17) 

where 

1 1 1 hI .1:[IJ 

Z= 
Zj Z2 zp 

.h= 
h2 

and x = 
x[2J 

, 

N-l 
Zj 

.,N-l 
""'2 

';/N-l 
N p hp x[NJ 

Unfortunately, the LS Prony method doesn't perform well in the presence of signifi

cant additive noise because it assumes the data matrix A is error free and models the 

observation error in b as white noise. Different methods that have been used to im-

prove the performance of the Prony method include employing high prediction orders 

and reduced rank approximations of the data matrix via singular value decomposition 

(SVD) [31, 43, 68, 69J. The higher prediction order improves the estimation of signal 

parameters by adding extra exponentials to model the additive noise. The poles Zk 

related to the true signal exponentials cluster closer to their correct values, while the 

extraneous poles fluctuate widely to account for the noise. The noise contribution to 

the data matrix A can be reduced by using its reduced rank approximation 

(2.18) 

composed of the largest K singular values and singular vectors of A, where K is the 

number of signal exponentials, and 

A =U~VH (2.19) 
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where 

U [ ] U • E TrDN-p, = U 1, ... , UN _p , " m. 

is the SVD of A with UHU = IN - p and yHy = Ip. The principle eigenvector (PE) 

method developed by Tufts and Kumaresan [68, 69] uses both a high prediction order 

and the reduced rank approximation of Eq. (2.18) to improve Prony's method in the 

presence of noise. More recent work has applied a modified LS Prony method to the 

frequency estimation problem [25, 39, 66]. 

2.3 Total Least Squares Approach 

In the classical LS problem of Eq. (2.15), there is an underlying assumption [18] that 

all of the errors are confined to the vector b, i.e., that the data matrix A has no errors. 

Since both A and b contain values from the data sequence x[n] for 1 ::; n ::; N, errors 

in b will also appear in A. The total least squares (TLS) method [18, 73] compensates 

for error in both A and b, and should be expected to give a better solution than 

Eq. (2.15). 

2.3.1 Solution to the Total Least Squares Problem 

A good way to motivate the TLS method is to state the ordinary LS problem as 

follows: 

minimize II.6.b11 2 
A.b E lRN-p 

(2.20) 

subject to b + .6.b E Range(A) 
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where II . 112 denotes the l2 norm given by 

(2.21) 

The LS problem amounts to perturbing the observation b by a minimum amount ~ b 

so b + ~ b can be predicted by the columns of A. The TLS problem accounts for 

perturbation in both b and A, i.e., 

(A + ~A) w = b + ~b , (2.22) 

or expressing Eq. (2.22) in a different form, 

or 

(C + ~C) z = 0 (2.23) 

where 

The TLS problem seeks to 

minimize II~CIIF 
~c E IR(N-p)x(p+l) 

(2.24) 

subject to (b + ~b) E Range(A + ~A) 
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where II . IIF denotes the Frobenius norm given by 

II~CIIF = L I Lkij 12 (2.25) 
i,j 

Eq. (2.23) shows that the TLS problem involves finding a perturbation matrix ~C E 

lR(N-p)x(p+l) having minimum norm such that C + ~C is rank deficient. The SVD 

can be used for this purpose. Let 

(2.26) 

where 

u = [Ul, ... , UN-p], U E lRN - p 
t , 

y = [VI, ... , Vp+l], 

be the SVD of C with UHU = I N - p and yHy = I p+l . It is assumed here that the 

problem is overdetermined, i.e., N > 2p. Two cases arise in the TLS solution. In the 

first case, when O"p > O"p+1, a unique solution exists. The solution can be thought of 

as finding a matrix (C + ~C) of rank p that satisfies Eq. (2.24). A reduced rank 

approximation to 
p+l 

C = L O"iUiV{J (2.27) 
i=l 

is obtained by removing one or more O"i terms from Eq. (2.27). The smallest pertur

bation ~C that reduces the rank of C by one is 

(2.28) 
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Inserting Eq. (2.28) into Eq. (2.23) yields z = O:Vp+l, since Vp+l is now in the nullspace 

of 
p 

(C + ~C) = L O"iUiV{J 

i=l 

Thus, provided (VP+dp+l =I 0, the TLS solution is given by 

-1 
WTLS = -:----:--

(Vp+1)p+l 

(2.29) 

(2.30) 

The TLS solution does not exist if (Vp+l )p+l = 0, but this doesn't commonly arise 

in engineering applications. In the second case, when O"p = O"p+l, a solution may 

still exist, but it is not unique. However, a unique solution is chosen in the sense of 

minimum Ilorm [18, 73]. 

An alternative expression for the TLS solution WTLS in Eq. (2.30) can be derived 

as follows. 

C H CVp+l = (YbUH)(UbyH)vP+l 

= (Yb2yH)vP+l 

2 = O"p+l V p+l (2.31) 

Inserting C = [A b] and Vp+l = into Eq. (2.31) gives the expression: 

(2.32) 

Expanding Eq. (2.32) gives the set of equations, 
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(AHA - a-;+lIp)v~+l + (vp+r)p+lAHb = 0 

b H AV~+l + (bHb - a-;+l)(Vp+l)P+l = 0 

I 

B 'f( ) -1-0 -vp +1 
ut 1 Vp+l p+l r ,WTLS = ( ) 

Vp +l p+l 
so Eq. (2.33) reduces to 

(2.33) 

(2.34) 

(2.35) 

If (AH A - a-;+lIp) is invertible, the alternative expression for the TLS solution is 

(2.36) 

2.3.2 Prony's Method and Total Least Squares 

The TLS solution WTLS is the maximum likelihood (ML) estimate for Eq. (2.15) 

only if the errors in C = [A b] are independently and identically normally dis

tributed with common covariance matrix proportional to the identity matrix with 

zero mean [35, 73]. Due to the Toeplitz structure of the matrix A, the errors are not 

independently distributed, so the TLS solution is not optimum. However, the TLS 

solution does tend to reduce the effects of noise in the linear prediction formulation, 

and provides improvements over the LS solution. Rahman and Yu [56] applied the 

TLS method to the linear prediction frequency estimation problem and demonstrated 

better performance than the LS-based principal eigenvector (PE) method [69] for the 

same prediction order. The TLS method yielded the greatest improvement relative 

to the PE method at minimal prediction orders, although both solutions improve 

with higher prediction orders. As the prediction order is increased, additional corre

lated errors are added to the matrix C, reducing the benefit of the TLS method. At 

maximal prediction order, with p = If for even N, both the TLS and PE solutions 
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converge to the same performance. 

The matrix Z in Eq. (2.17) used in the third step of the Prony Method for deter

mining the parmeters hk has a Vandermonde structure [19]. Assuming that relatively 

good estimates are available for the system poles Zk, the major source of error will 

be in the observation vector x. Thus, the LS solution of Eq. (2.17) appropriately 

accounts for errors in the model. 

2.4 Structured Total Least Squares Approach 

Strnctured Total Least Squares (STLS) is a natural extension to the TLS approach 

when the same observations occur in multiple rows of the matrix C in Eq. (2.23). In 

order to find an ML estimate of w, [AA Ab] needs to have the same structure as 

[ A b] [1]. This leads to the following formulation of the STLS problem [35]: 

minimize II [AA Ab] II 
AA,Ab,w x 

(2.37) 

such that(A + AA)w = (b + Ab), 

and [AA Ab] has the same structure as [A b], 

where II· Ilx denotes the l2 norm defined on the unique entries of [AA Ab]. Many 

different formulations have been proposed for the STLS problem involving linearly 

structured matrices: the Constrained Total Least Squares (CTLS) approach [1], the 

Strnctured Total Least Norm (STLN) approach [60, 72], and the Riemannian Singular 

Value Decomposition (RiSVD) approach [13]. Each approach uses iterative numerical 

algorithms to find the solution, but all of them suffer from inherent multiple local 

minima that occur in the STLS problem [34]. When the noise level is relatively low, 

the STLS problem is not difficult to solve, and simple starting values will suffice. 

However, when STLS is used for its rank reducing properties and there is not a 

solution nearby in an l2 norm sense, the starting values need to be chosen with care. 
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2.4.1 STLS Solution for Hankel/Toeplitz Matrices 

The linear prediction relation of Eq. (2.15) can be written with a Hankel structure 

by reordering the columns of matrix A and reversing w: 

A= 

x[I] 

x[2] 

Aw~b 

x[2] 

x[3] 

x[N - p] x[N - p + 1] 

w[p] 

x[p] 

x[p+ 1] 

x[N -1] 

x[p+ 1] 

w[p-I] x[p+2] 
w = , and b =-

w[I] x[N] 

(2.38) 

so that C = [A b] has a Hankel structure. The solution w is then reversed for 

determining the poles Zk in Step 2 of the Prony method. The Hankel STLS problem 

can be solved using the Hankel STLN formulation: 

N 

minimize L(6x[n])2 
ax,W 

n=l 

such that (A + ~A)w = (b + ~b), 

and [~A ~ b] has a Hankel structure, 

(2.39) 

where 6x[n] for 1 ::; n ::; N are the unique entries of the Hankel matrix [~A ~b]. 
The STLN approach solves the STLS problem as a nonlinear optimization problem 

with nonlinear constraints [60, 72]. Lemmerling and van Huffel [35] propose the fol

lowing STLN algorithm for solving Eq. (2.39): 
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STLN Algorithm 

Input: extended Hankel data matrix [A b] E lRmx(n+l) (m > n) of full rank n + 1 

and identity weighting matrix Im+n 

Output: the parameter vector w E lRnx1 and vector Ax E lR(m+n)xl composed of 

the unique entries of the matrix [AA Ab] 

Step 1: Initialize Ax, w, and Lagrange multiplier vector, E lRmx1 

Step 2: While stop criteT'ion not satisfied 

Step 2.1: Solve the following system of equations: 

End 

Ai 

Step 2.2: Ax +- Ax + Ax 

w+-w+Aw 

,+-, + Ai 

[
g + J T

,] 

r(Ax, w) 

[
Im+n 0] 

where S = 0 0 E lR(m+2n) x (m+2n) , J = [W A + AA] E lRmx (m+2n) is the 

Jacobian of the constraints r(Ax, w) in Eq. (2.39), 

r(Ax, w) = (A + AA)w - (b + Ab) 

g ~ [In~,n :] [::] E m:lm+2niU is the gradient of the objective function in 

Eq. (2.39), and W E lRmx(m+n) is defined by 
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which for the Hankel-structured matrix [~A ~bJ has the form 

W= 

w[PJ w[lJ -1 0 0 

o w[PJ w[lJ -1 0 

o 
o o w[PJ 

o 
w[lJ -1 

The stop criterion, chosen based on the application, tests for convergence of the STLN 

algorithm. With each iteration, the algorithm updates parameter estimates for ~x 

and W in an attempt to drive the constraint r( ~x, w) to zero. If the iterative solution 

approaches close to one of many local minima, the algorithm will not converge to the 

actual STLS solution. The s[y;te;TJOf equations in Step 2.1 is solved using the LDLT 

factorization of the matrix J ° . 
A natural choice for the initialization parameters in the STLN algorithm would be 

to set ~Xinitial = 0, , = 0, and Winitial = WLS or WTLS· It turns out that Winitial = 

WLS is the better choice, but both take a large number of iterations for the STLN 

algorithm to converge to a solution that is often a local minima. Lemmerling et al. [34J 

propose a better initialization procedure based on the Hankel Total Least Squares 

(HTLS) subspace algorithm developed for Nuclear Magnetic Resonance (NMR) data 

fitting [71]. The HTLS algorithm is suboptimal in the sense that while it gives a 

good estimate of the solution, it is not the closest rank-deficient Hankel matrix to 

[ A b]. The STLN algorithm is then initialized close to the global solution for the 

STLS problem using the values ~Xinitial = ~XHTLS, , = 0, and Winitial = WHTLS. 
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HTLS Algorithm Description 

The HTLS algorithm [70] is based on the fact that Eq. (2.14) can be modeled by an 

autonomous linear state-space model of order p, 

y[n + 1] = By[n] 
(2.40) 

x[n] = hTy[n] + Ern], 

where y[n] is a complex state vector, hT is a complex row vector, and x[n] are noisy 

observations with observation error e[n] = x[n] - :e[n]. Equating Eq. (2.14) and 

Eq. (2.40) for 1 :::; n :::; N yields 

p 

:e[n] = h T B n
-

1Y[I] = L hkZ~-l, 
k=l 

where :e[n] has zero observation error, and defines 

Zl 0 

B= 

o 0 o 

o 
o 

y[l] = 

1 

1 

1 

(2.41 ) 

Essentially, the modern Prony method is described in a state-space model which is 

used to estimate the parameters Zk and hk . A Hankel matrix H E lR(LXM), as square 

as possible for best parameter accuracy [71], such that L = .M (+ 1) ~ N /2, is formed 

using the N data points, 

x[l] 

H= x[2] 

x[2] 

x[3] 

x[M] 

x[A1 + 1] 

x[L] x[L + 1] x[N] 
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If the observation error E[n] is zero, H decomposes into an observability matrix 0 

and a controllability matrix C given by: 

H=OC= (2.42) 

In practice, the observation error in Eq. (2.41) is non-zero. H p , the SVD reduced-rank 

approximation of H, is computed as 

(2.43) 

where 

L: = diag(O"l, ... , O"min(L,M)), 0"1 2:: ... 2:: O"min(L,M), 

and Up, L:p, and Vp are the first p columns of U, L:, and V. Hp is used to estimate 

o and C up to a similarity transformation matrix S, 

(2.44) 

A A A .1 
where Up = Up and Vp = VpL:p if unbalanced splitting is used, and Up = UpL:J and 

, I 

Vp = VpL:$ if balanced splitting is used. Substituting B = S-lQS into Eq. (2.44), 

where Q = SBS- 1 has the same eigenvalues as B, yields: 
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[SY[I] QSy[l] ... QM-1SY[I]] (2.45) 

The TLS solution QTLS is computed for the incompatible set 

(2.46) 

r r A 

where Up and Up are derived from Up by omitting its first and last row, 

hTS-1Q hTS-1 

U p = 
h TS-1Q2 

and U -
hTS-1Q 

p-

hTS-1QL-l hTS- 1 QL-2 

Provided V 22 is non-singular, the TLS solution is given by 

(2.47) 

- -
in which V 12 and V 22 are obtained from the SVD of the augmented matrix 

(2.48) 
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where 

~12J P 
V 22 P 

P P 

If V 22 is close-to singular in Eq. (2.47), it is replaced by its pseudo-inverse V~2' The 

system pole estimates Zk are equal to the eigenvalues of QTLS. It is not necessary to 

find the similarity transformation matrix S. Finally the parameter estimates hk are 

obtained by inserting the pole estimates Zk into Eq. (2.17), 

(2.49) 

STLS Initialization using HTLS 

Once the estimates Zk and ilk are obtained using the HTLS Algorithm with unbalanced 

splitting in Eq. (2.44), the resulting adjusted data values are calculated as 

p 

(x[n] + LJ.xH1'LS[n]) = L hkZ~-l (2.50) 
k=] 

from which the initial values for LlAHTLS , LlbHTLs , and WHTLS in Eq. (2.39) are 

found. 

HTLS Algorithm 

Input: extended Hankel data matrix [A b] E lR.mx(n+l) (rn > n) of full rank n + 1 

Output: extended Hankel noise data matrix [LlAHTLS LlbHTLS] and parameter 

vector WHTLS, such that [A + LlAHTLS b + LlbHTLS] is a rank-deficient Hankel 

matrix. 

Step 1: y +-- [A(:, 1)1' A(rn, 2 : n) b(rn)]1' 

44 



Step 2: A1 ~ ceil((rn + n)/2) 

Step 3: H ~ hankel(y(l : rn + n - AI + I), y(rn + n - !'vi + 1 : rn + n)) 

Step 4: Calculate the left singular vectors U ( :, i), i = 1, ... , n of H, 

corresponding to the n largest singular values 

Step 5: Calculate the TLS solution of the system 

U(2: !vI, 1 : n)Q ~ U(l : !v! - 1,1 : n). 

The eigenvalues of Q are the estimated signal poles Zl, l = L ... ,n 

Step 6: Solve the complex amplitudes iLL, l = L ... ,n. from the system of equations: 

y(k) ~ L~=l iIlzt, k = 1, ... , rn + n 

Step 7: y(k) ~ L~~l hlzt, k = 1, ... , rn + n 

Step 8: [~AHTLS ~bHTLS] ~ hankel(y(l : rn), y(rn : rn + n)) - [A b] 

Step 9: Solve the square system 

(A(l : n, 1 : n) ~A(l : n, 1 : n))wHTLS = b(l : n) + ~b(l : n) 

The STLN algorithm is then initialized using ~XHTLS and WHTLS. The improved 

initialization procedure enhances both the solution quality and calculation time by 

starting the iterative search routine close to the global minimum for the Hankel 

STLS problem [34]. Lemmerling et al. [33] demonstrated the improved accuracy of 

the STLN algorithm using HTLS parameter initialization in a speech compression ap

plication. Even with the improved HTLS initialization procedure, the computational 

load of the STLN algorithm is large compared to standard speech coding algorithms. 

Various methods have been used to produce faster STLS algorithms [44], but current 

algorithms are are still too slow for real-time application. 

45 



46 



Chapter 3 

Simulation Results 

As described in Chapter 1. the different techniques for modeling acoustic signals based 

on the sinusoidal superposition model of Eq. (1.1) differ primarily in the method 

by which the interpolation of amplitude and phase contours is performed between 

analysis blocks. Frequency estimation is generally performed by taking the Fourier 

transform (DFT) of a windowed block of data of length N samples, with N = 512 

being common ill practice, although some algorithms adaptively vary N. Different 

windowing functions are used to provide better spectral peak estimation performance. 

The data sample advance between analysis blocks, known as the hop size H, is usually 

chosen to have some overlap between blocks to produce smoother results across time 

at the expense of higher computational loading [64]. Choosing H = 1 is generally 

not used since parameters are assumed to be slowly-varying and accumulation of 

excess data is not desirable [17]. In most applications, data storage is an important 

design criteria, and while optimal synthesis quality is desired, some amount of signal 

compression is acceptable. 

In the case of modeling marine mammal whistle calls, computational loading and 

signal compression is not a design criteria in generating high-quality synthesis mod

els. Since the frequency contours of a marine mammal whistle call vary with time, a 

method of closely tracking the frequency contour is desired to improve the synthesis 
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quality. This is achieved by using a hop size of H = 1 and reducing the effective 

window size by applying the parametric approach of linear prediction to estimate the 

instantaneous frequency. Based on the harmonic structure of marine mammal whis

tle calls, estimation of the fundamental frequency contour should provide adequate 

estimates of higher harmonics, as assumed in [5]. In a communications scenario, 

good frequency tracking performance is desired even at relatively low SNR to ensure 

capability of reconstructing the embedded watermark. 

The rest of this chapter proceeds as follows. The algorithm for tracking the funda

mental frequency contour and amplitude contours using weighted STLS and Prony's 

method is described. Simulation results are presented for tracking frequency con

tours of chirp signals with constant amplitude, and are compared to other frequency 

estimation methods. Finally, simulation results are presented for tracking both the 

frequency and amplitude of a chirp signal with variable amplitude harmonics. 

3.1 Algorithm Description 

The algorithm applies a sliding block window of size Jt.1 samples to a harmonically 

structured whistle recording sin], where p = 2R is the model order, R is the number 

of harmonics in sin], and !v! - p is the number of linear prediction equations used to 

estimate the AR parameters of sin]. Thus, sin] is modeled as 

R 

8[n] ~ ~ oc[n] cos (2m!>c[n] + B,) + v[n], for 1:S n :S N, (3.1: 

or explicitly writing each exponential component, 

R 

8 [n] = ~ ac ~n] exp (j B,.) [ exp (.i21r"Qn]) + exp ( ~ j21f¢c [n]) 1 + v[n] , (:l.2) 
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where 11'[71] is the instantaneous frequency of the Tth harmonic at time 71 such that 

n 

¢r[n] = I: 11' [i]1 1s (3.3) 
i=l 

0,1'[71] is the amplitude of the Tth harmonic at time 71, 81' is the initial phase of the Tth 

harmonic, 1s is the sample rate, and v[n] is additive ambient noise. The Zth analysis 

block, using a hop size of H = 1, is expressed as 

xdm] = W[mJs[m + 1 - 1], (3.4) 

for 1::; l ::; L = N - fill + 1, 

and 1::; 11/, ::; AI, 

where ~V[11/,], discussed on page 51, is a window of length AI applied to the data. 

Setting up the first step of Prony's method using the Hankel structure in Eq. (2.38) 

gives 

Az= 

xz[lJ 

xz[2] 

xz[fill - p] xdAI - p + 1] 

Wl= , and b l =-

wd1] 

xz[fill - 1J 

xz[p + 1J 
Xl[p + 2] 

xdAI] 

(3.5) 

Eq. (3.5) is solved using the STLS method if v[n] =J- 0, but in simulations where 

v[n] = 0, the LS method is sufficient. The system pole estimates Zk,l are then found 
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as the roots of the polynomial 

P 

~1(Z) = zP + L wzlkJzp-k (3.6) 
k=l 

keeping in mind that Wl is written in reverse order when Al has a Hankel structure. 

In the presence of noise, the poles Zk,l fluctuate back and forth across the unit circle as 

the analysis block Xl moves through the data, giving a better frequency estimate than 

if the poles were constrained to be on the unit circle. However, the underlying model 

in Eq. (3.1) assumes that the original dolphin whistle has an undamped sinusoidal 

structure, so only the frequency component 

j- is -1 (Im{ Zk,z}) 
kl = -tan 
, 21T Re{ Zk,l} 

(3.7) 

is retained while scaling the pole estimates to the unit circle, i.e., 

_ Zk,l 

zk'Z=-I:; I '-'k,l 
(3.8) 

In the STLN formulation [34], the HTLS algorithm is used to initialize the iterative 

search for the closest rank-deficient Hankel matrix [AI bl ]. However, simulation 

results show that both the STLN [35J and extended structured least squares (ES

TLS) [75J algorithms do not improve upon the frequency estimate ik,l provided by 

the HTLS algorithm. Thus, the poles Zk,l are found as the normalized eigenvalues of 

the matrix QTLS,1 (Eq. (2.47)). The pole estimates Zk,l are then used in Step 3 of the 

Prony method to calculate the parameters hk,l using Eq. (2.17), 

- - H - -1 - H 
hi = (Zl Zl) Zl Xl (3.9) 
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where 

1 1 1 hU xz[l] 

ZI= 
z1,I Z2,l zp,l 

h z = 
h 2,l 

and Xl = 
xl[2] 

, , 

;.:;M-l -M-l ;M-l 
hp,l .Tz[A1] Wl,l Z2,1 ~p,1 

The least squares estimate of the amplitude of the kth harmonic exponential is 

(3.10) 

meaning that for each analysis block, the amplitudes are chosen to minimize the 

residual mean square error (MSE) between the sinusoidal model and the observed 

data. 

An important aspect of this approach is selecting the window W[rn] and measuring 

the corresponding estimation delay between the leading edge of the analysis window 

and the effective estimation point of the algorithm. Since there is not currently a 

recursive implementation of the STLS method, the type of window is restricted to a 

constant-length analysis of the data, known as a sliding window approach. In general, 

t.he window that. is chosen is an exponent.ial sliding window, 

{

AM - m 

W[m]= 0 
1 ::; m ::; M, where 0 < A ::; 1 

(3.11) 
elsewhere. 

If AI, 111 is a rectangular window. For 0 < A < 1, the weights decay at an exponen

tial rate, gradually decreasing the effect of old data on current parameter estimates, 

which is why A is called the forgetting factor [22]. The resulting rectangular and ex

ponential sliding window approaches using STLS are analogous to the sliding window 

least squares (SWLS) and exponentially weighted least squares (EWLS) approaches 

compared by Niedzwiecki [47]. For estimators with the same effective window length, 
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E\VLS has better parameter tracking characteristics due to the window's higher de

gree of concentration at the leading edge of the window, while the rectangular SWLS 

has better parameter matching properties due to the linearity of its phase charac

teristic. Essentially, reducing the forgetting factor A allows the algorithm to track 

fast parameter changes better, but lowers the estimation accuracy attainable when 

parameters are slowly-varying. In terms of AR modeling, the exponential window 

applies an artificial damping factor to the data in order to improve tracking perfor

mance, causing the corresponding system poles to shift to Zk ~ zd A. The linear 

prediction relation in Eq. (3.5) can also be applied in the backward direction with 

respect to time. For a sinusoid with poles on the unit circle, choosing Af > 1 in the 

forward direction scales the system poles within the unit circle and is the same as 

choosing Ab = 1/ Af in the backward direction. 

The effective sample estimation point te of the analysis window is the weighted 

time average of the window vV[m] for which a linear prediction equation is valid, i.e. 

p+ 1 < Tn::; !'vI, 

, 2:=~=P+l mW[m] 
te = M 

2:=m=p+ 1 vV [m 1 
,\"M \M-m 
~m=p+l mA 
,\"M AM - m 
~m=p+l 

(3.12) 

The corresponding sample estimation delay Te is 

(3.13) 

and the effective window length is leff ~ 2Te. Taking advantage of knowing the point 

in time te,l for which an estimate lk,l is valid, where 

te,l = M + I - 1 - Te = te + I - 1, (3.14) 
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a more localized estimate of the amplitude contours in Eq. (3.9) can be made by 

contracting Xl about ie,l and reducing the number of rows in Zl. The weighted average 

frequency for the Zth analysis block, 

_ "C'M f [m + Z - l])..M-m f Lm=p+l k 

k,l - "C'M )..lv1-m 
Lm=p+1 

(3.15) 

where fdn] for 1 :::; n :::; N is the underlying frequency contour for the kth exponential, 

provides a measure of the smoothing effect of the sliding window. However, fk,l will 

usually track closer to fr[n] than Jk,l when the frequency contour changes faster than 

linearly. 

3.2 Frequency Thacking of Chirp Signals 

This section presents simulation results demonstrating the ability to track the fre

quency of harmonic chirp signals in the presence of white noise, and comparison is 

made with other frequency estimation methods. The simulated chirp whistles are 

constructed according to Eq. (3.1) and Eq. (3.3) with ar[n] = 1 for all n, Br = 0, 

N = 500 samples, fs = 100 kHz, v[n] is additive white gaussian noise with variance 

0"; such that SNR = 5 dB unless specified otherwise, and fr[n] is specified for each 

chirp. Unless otherwise specified, the algorithm parameters are chosen as ).. = 1, 

lvl = 101, and p = 2R, with the chirp having R harmonics. In the following figures, 

fHTLS represents the positive frequency estimate fk of fr obtained using the HTLS 

algorithm and fAve is the weighted average frequency for each analysis block, fk' 

3.2.1 Single Harmonic Linear Chirp 

Fig. 3-1 demonstrates the frequency estimation and tracking performance of the HTLS 

algorithm for a linear chirp with h[n] = 8000 + 2(n - 1) (Hz) for 1 :::; n :::; N. The 

resulting frequency estimate is essentially unbiased, which can be seen graphically 
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after adjusting for the estimation delay, where Te = 49 samples in this example. 
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Figure 3-1: HTLS frequency tracking performance for a linear chirp (SNR = 5 dB) 

3.2.2 Double Harmonic Linear Chirp 

Fig. 3-2 demonstrates the frequency estimation and tracking performance of the HTLS 

algorithm for a linear chirp with two harmonics (R = 2), fdn] = 8000+2(71-1) (Hz) 

and h[n] = 16000 + 4(71 - 1) (Hz) for 1 ::; 71 ::; N. 
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Figure 3-2: HTLS frequency tracking performance for a linear chirp with two har
mOllics (SNR = 5 dB) 

3.2.3 Single Harmonic Linear Chirp with Abrupt Frequency 

Shifts 

Fig. 3-3 demonstrates the frequency estimation and tracking performance of the HTLS 

algorithm for a linear chirp with an abrupt frequency shift of 250 Hz, 

{

8000 + 2.5(n - 1) 
JI[nJ = 

7750 + 2.5(n - 1) 
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for 1 ::; n ::; 250, 
(3.16) 

for 251 ::; n ::; 500. 
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Figure 3-4: HTLS frequency tracking performance vs. A (SNR = 15 dB) 
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Fig. 3-4 shows how the tracking performance of the HTLS algorithm is improved 

by lowering the forgetting factor A at the expense of estimation accuracy. To clearly 

demonstrate the tradeoff between tracking performance and estimation error, an SNR 

of 15 dB and a frequency shift of 500 Hz are simulated, where 

{

8000 + 5(17 - 1) 
11[17J = 

7500 + 5(17 - 1) 

for 1 :::; 17 :::; 250, 
(3.17) 

for 251 :::; 17 :::; 500. 

In the case where A = 0.9, the transition between the linear chirp segments is much 

sharper than for A = 1 due to the shorter effective window length. The corresponding 

estimation point ie is closer to the leading edge of the analysis window, which shifts the 

frequency estimation region toward the end of the signal. The increased estimation 

error variance would preclude using A =1= 1 for most frequency estimation problems, 

unless it was necessary to detect abrupt frequency shifts. 

3.2.4 Single Harmonic Linear + Sinusoidal Chirp 

Fig. 3-5 demonstrates the frequency estimation and tracking performance of the HTLS 

algorithm for a chirp with a combined linear and sinusoidal frequency contour, 11 [17] = 

8000 + 2(17 - 1) + 500sinCr(~o~I)) (Hz) for 1 :::; 17 :::; 500. The frequency estimation 

error becomes biased at peaks in the underlying frequency contour, fr[17], due to 

the smoothing effects of the analysis window. However, the frequency estimator 

tracks closer to fr[17J than the weighted average frequency for each analysis window. 

Thus, while peaks in the actual frequency contour are not fully resolved due to the 

estimation bias, the existence of peaks in the frequency contour can be detected by the 

HTLS algorithm with a sliding window. If needed, the actual peaks could be resolved 

with better accuracy by removing the smoothing effects of the analysis window by 

deconvolution. In regions where the frequency contour is close to linear, the HTLS 

frequency estimate is practically unbiased. 
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Figure 3-5: HTLS frequency tracking performance for sinusoidal chirp (SNR = 5 dB) 

3.2.5 Comparison with Alternative Frequency Estimators 

In [43], Marple discusses the important difference between spectral estimation, which 

attempts to match the spectrum of a signal over a continuous range of frequencies, 

and frequency estimation, which is only concerned with the behavior of the spectrum 

local to a specific frequency. Kay [28] reviews the sinusoidal parameter estimation 

problem, showing how the ML estimate of the frequency of a single complex sinusoid in 

complex additive white Gaussian noise is found by choosing the frequency at which the 

periodogram is maximized. The Cramer-Rao lower bound (CRLB) for the unbiased 

frequency estimator of a single complex exponential of the form 

s[n] = Al exp[j(21T!In + 81)] + v[n], for 1 S n S N, (3.18) 
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with unknown parameters AI, iI, and ()l, and complex white Gaussian noise v[n] with 

variance 0-;, was shown by Rife and Boorstyn [57] to be 

(3.19) 

For a single real sinusoid, 

s[n] = Al cos(27ffln + ()d + v[n] 

= ~l ( exp[j(27ffln + ()l)] + exp[-j(27fiIn + ()d]) + v[n], 
(3.20) 

for 1 :S n :S N, the frequency CRLB [58] is 

(3.21 ) 

When estimating the unknown parameters of a single complex exponential linear 

chirp sequence, the CRLB of Eq. (3.19) applies to the center frequency of the analysis 

window [16]. Extending to real linear sinusoidal chirp signals, the CRLB of Eq. (3.21) 

also applies to the center frequency of the analysis window [58]. 

Quinn and Hannan [55] present different classes of frequency estimators that can 

be compared with the HTLS algorithm for linear chirp signals. Fig. 3-6 shows the 

performance of some of these frequency estimators compared to the CRLB for the 

linear chirp in Eq. (3.1), with R = 1, adn] = Al = 1 and fl[n] = 8000 + (n -1) (Hz) 

for 1 :S n :S N, N = 1100, fs = 100 kHz, and ()l = O. The HTLS frequency estimate 

was computed using a rectangular window (,\ = 1) of length !v! = 101 and a model 

order of p = 2. SNR is defined as 

SNR = Ai 
20-2 

v 
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The MSE for each frequency estimator is computed as 

(3.23) 

where J = 5 is the number of independent trials performed for each chirp, L = 

1000 is the number of frequency estimates computed for each trial, and 1/ is the 

center frequency of the Zth analysis window for a rectangular window. Each of the 

frequency estimators applies the same sliding rectangular window to the data to 

obtain a frequency estimate jl,j for each analysis window and trial. The corresponding 

CRLB is 
, 3 

var(fz) 2: SN R 1f2 M(lvf2 - 1) (3.24) 

The FTI frequency estimator, using the FT 13 algorithm of [55], performs an in

terpolation about the maximiser of the periodogram using three Fourier coefficients. 
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Figure 3-6: Linear chirp frequency estimator performance vs. CRLB 
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Macleod [40] has developed alternative techniques based on the same approach. The 

RIFE frequency estimator is an older approach by Rife and Vincent [59] based on 

quadratic interpolation of the moduli of Fourier coefficients to reduce data storage 

requirements. The QUINN frequency estimator is an AR-based iterative algorithm 

developed by Quinn and Fernandes [54]. The multiple signal characterization (MU

SIC) frequency estimator developed by Schmidt [63] is based on eigenanalysis of the 

noise subspace. 

Each of the frequency estimators in Fig. 3-6 was developed for quasi-stationary 

signals for which the frequency could be considered constant in each analysis window. 

Even though the estimators are used in an unconventional manner when analyzing 

linear chirps, they provide a baseline to gauge the performance of the HTLS algorithm. 

As the SNR increases above 10 dB .. the HTLS algorithm increasingly outperforms the 

other frequency estimators and nearly achieves the CRLB for an unbiased estimator. 

Between ° and 5 dB, the QUINN frequency estimator outperforms the HTLS and 

FTI estimators due to an inherent bias that worsens performance at higher SNR. 

The faster FTI frequency estimator achieves nearly the same performance and can 

be considered as an alternative to HTLS at lower SNR. 

A lot of research has been done on joint 11L frequency and chirp rate estimation 

of linear chirp signals with short data lengths. Djuric and Kay [16] proposed similar 

estimators based on their ease of on-line or off-line implementation that achieve the 

CRLB at SNR above 8 dB, with SNR defined as (4) for a single complex sinusoid. 
(Tv 

Liang and Arun [37] use a method very similar to the HTLS algorithm with balanced 

splitting to initialize a search for the ML parameter estimates of multiple superim

posed chirp signals, with simulation results attaining the CRLB at SNRs above 10 

dB. Saha and Kay [61] propose using importance sampling to maximize a compressed 

likelihood based on frequency and chirp rate to implement joint ML parameter esti

mation of superimposed chirp signals, demonstrating simulation results that achieve 

the CRLB at SNRs above 3 dB. At low enough SNR, all of the frequency estimators 
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depart sharply from the CRLB, as seen in Fig. 3-6 below an SNR of 3 dB. Ultimately, 

Fig. 3-6 demonstrates that the HTLS algorithm can be used to nearly optimally track 

the frequencies of chirped signals. 

3.3 Amplitude Estimation of Chirp Signals 

This section presents simulation results demonstrating the ability of the Prony method 

to estimate the amplitudes of a double harmonic linear chirp signal based on frequency 

estimates obtained using the HTLS algorithm. As with Section 3.2. the simulated 

chirp whistle is constructed according to Eq. (3.1) and Eq. (3.3) with N = 500 

samples, 1s = 100 kHz, er = 0, and v[n] is white Gaussian noise with variance 0';. 
The frequency and amplitude contours are defined as 

and 

{ 

8000 + 2 (n - 1), r = 1 
1r[n] = 

16000 + 4 (n - 1), r = 2 

{ 

~(1 + tukey[nJ), r = 1 
ar[n] = 

i(l + tukey [n]), r = 2 

(3.25) 

(3.26) 

for 1 :S n :S, where tukey[n] is the N point cosine-tapered Tukey window [20] with 

parameter a = 0.5 shown in Fig. 3-7. The HTLS algorithm parameters are chosen 

as ,\ = 1, !VI = 101, and p = 4. The harmonic chirp amplitude estimates are found 

from a reduced version of Eq. (3.9) by using "\IV = 20 data points centered at the 

estimation point ie.z for the lth analysis window, 

(3.27) 
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where 

1 1 1 hl,l xdlie,l - 'r + IJJ 

ZI= 
Zl) Z2,l zpJ 

hz= 
h2 ,1 

and Xl = 
xzllie,l - iT + 2JJ 

, , 

-W-l ;:;W-l -W-l 
hp,1 xzllie,l - ~i + lVJJ Zl,l ""2,1 Zp,l 

This is done to limit the effect of time-varying frequency and amplitude parameters 

within the analysis window while providing sufficient averaging to reduce the error 

vanance. 

Fig. 3-8 compares the estimated amplitude contours aLS to the actual contours 

in Eq. (3.26) for an SNR of 50 dB. There are two noticeable factors which increase 

the amplitude estimation error at relatively high SNRs. First, even in regions of con

stant harmonic amplitudes, the second harmonic amplitude estimate shows greater 

deviation from the known contour. Rife and Boorstyn [58J show that for multiple 
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Figure 3-8: Amplitude estimation performance for double harmonic' linear chirp (SNR 
= 50 dB) 

tones, the CRLB of a particular tone's frequency estimate depends on its own ampli

tude but is independent of the other tone amplitudes. The weaker second harmonic 

results in a less accurate amplitude estimate due to a less accurate frequency esti

mate in Eq. (3.27). Second, in regions where a tone's amplitude is time-varying, the 

amplitude estimate is less accurate because Eq. (3.27) assumes the parameters hk,l 

are constant within the analysis window. The largest estimation error in Fig. 3-8 

occurs in regions where both the chirp amplitude is changing and the corresponding 

frequency estimate is less accurate. A third source of error is due to the assumption 

that the frequencies are also constant in Eq. (3.27), while the underlying frequency 

contours are also time-varying. Fig. 3-9 shows the residual ~SE in the amplitude 

estimation problem, computed from Eq. (3.27) as 

d 1 M' SE = Ilxl - Zzfllll~ resi ua 
vV 

(3.28) 
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Figure 3-9: Residual MSE for double harmonic linear chirp (SNR 50 dB) 

The residual MSE is characterized as being somewhat periodic and sensitive to rapid 

changes in the amplitude and frequency contours, with strong dependence on the 

weaker chirp amplitudes due the corresponding decrease in frequency estimation ac-

curacy. 

Fig. 3-10 compares the estimated amplitude contours aLS to the actual contours in 

Eq. (3.26) for SNR = 25 dB. The increased additive white noise degrades the frequency 

and amplitude estimation problems, resulting in larger deviations from the underlying 

amplitude contour for sustained periods of time. Fig. 3-11 shows the corresponding 

residual MSE. In comparison with Fig. 3-9, the increased additive white noise boosts 

the residual MSE while reducing the relative performance gain when the amplitudes 

are held constant. 
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Figure 3-11: Residual MSE for double harmonic linear chirp (SNR = 25 dB) 

66 



Chapter 4 

Synthetic Marine Mammal Whistle 

Calls 

This chapter applies the experience gained from the parameter estimation of harmonic 

linear chirps in Chapter 3 to the parameter estimation, modification and synthesis 

of bottlenose dolphin whistle calls. Section 4.1 focuses on parameter estimation and 

synthesis of bottlenose dolphin whistle calls. Section 4.2 proposes different strategies 

for watermarking whistle calls based upon detection capability and exploiting natural 

variability in the whistle call frequency contours. 

4.1 Modeling Recorded Bottlenose Dolphin Whis

tle Calls 

Fig. 4-1 shows a bottlenose dolphin whistle call composed of three separate whistles 

taken from the Sarasota Bottlenose Dolphin Whistle Catalog maintained at Woods 

Hole Oceanographic Institution [62]. The whistle call was recorded using a custom 

built suction cup hydrophone attached to the forehead of the dolphin. The original 

analog recording at is = 40 kHz was later digitized using a sample rate of is = 96 

kHz. Fig. 4-2 is a spectrogram of the bottlenose dolphin whistle call in Fig. 4-1 
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Figure 4-2: Spectrogram of bottlenose dolphin whistle call in Fig, 4-1 (dB) 
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computed using the short-time Fourier transform with a 750 point Hamming window 

and 250 samples of overlap [49]. Each whistle contains up to six harmonics with 

frequency generally increasing throughout the whistle. 

The performance of the frequency estimation problem is dependent upon three 

parameters: the exponential forgetting factor A, the number of data samples A1 used 

in each analysis block, and the model order p. To limit the smoothing effect of 

the analysis window while achieving optimal frequency matching characteristics, the 

values A = 1 and 1'111 = 101 are chosen. The choice of p is more complex. If the whistle 

calls were composed of R harmonics with stable, relatively equal amplitude contours, 

then the model order would be chosen as p = 2R. In reality, the higher harmonics are 

significantly weaker than the fundamental harmonic, and in regions where the whistle 

amplitude or frequency changes rapidly, the amplitudes of each harmonic fiuctuate 

strongly. Due to the known harmonic structure of the whistles and the relatively 

weak amplitudes of higher harmonics, all harmonics are best estimated as multiples 

of the fundamental harmonic, !I. A low model order of p = 2 is chosen, for which the 

frequency of the strongest harmonic is estimated, because of the occasional instability 

of the whistle harmonics. However, since higher harmonics are not accounted for in 

the model, the resulting fundamental frequency estimate has a higher error variance 

than if the data contained only the fundamental frequency contour. The solution 

is to apply a bandpass filter to isolate the fundamental harmonic from the higher 

harmonics before performing frequency estimation. 

The wide frequency range of the bottlenose dolphin whistle calls require using 

two overlapping bandpass filters to isolate the fundamental frequency contour. The 

overlap region is chosen to be large enough to allow a smooth transition between the 

two frequency estimates. The Matlab command f il tf il t [45] is used to perform zero

phasing filtering to ensure the resulting estimated frequency contours are correctly 

aligned in the time domain. Fig. 4-3 shows the frequency estimates for Whistle 1 

obtained using a bandpass filter overlap region of 12-12.5 kHz and a transition time 
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between frequency estimates of 237.65 msec. The resulting fundamental frequency 

contour is shown in Fig. 4-4. The frequency contours of the higher harmonics are 

fr[l] = T fdl] for 1 :S I < L, where L is the number of analysis blocks in the whistle. 

The harmonic amplitude estimates are then found for each analysis block using 

an estimation width of VV = 20 data points. For each data block, the number of 

harmonic amplitudes to be estimated is specified based on the frequency of the fun

damental harmonic. For example, when the fundamental harmonic exceeds 10 kHz, 

there will be at most three harmonics present due to the frequency cutoff at 40 kHz. 

Overestimating the number of harmonics in the data gives spurious results. The esti

mated amplitude contours for Whistle 1 is shown in Fig. 4-5. It is important to keep 

in mind that the amplitude estimates are performed for the recorded whistle and 

are not necessarily representative of the actual whistle, since the higher harmonics 

are artificially cutoff by the recording equipment at frequencies greater than 40 kHz. 

The actual harmonic amplitudes most likely do not fluctuate as rapidly as seen in 
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Figure 4-5: Estimated amplitude contours for Whistle 1 in Fig. 4-1 
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Fig. 4-5. The observed short-time variability in the amplitude contours accounts for 

model mismatch and frequency estimation error. 

Fig. 4-6 shows the residual MSE for Whistle 1. The MSE is remarkably low in the 

middle of the whistle while t.he amplitude contours are relatively stable, indicating 

good frequency and amplitude estimation performance. In regions where the whis

tle is less stable, such as during the attack phase at the beginning of the whistle, 

the parameters vary more quickly. resulting in worse estimation performance. The 

synthetic whistle is then constructed from the harmonic frequency and amplitude 

contours according to the model in Eq. (3.1), 

R 1 ' 

' [ ] "" A [] ( "" r Jdi] , ) s I = ~ aT I cos 21f ~ h + BT for 1 ~ I ~ L (4. 1 ) 

where aT are the harmonic amplit.ude contours, BT are the initial phases of each har

mOllie, and J1 is the fundamental frequency contour. Since the human auditory system 
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Figure 4-6: Residual MSE for Whistle 1 in Fig. 4-1 
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(HAS) is insensitive to the initial phase, the synthetic whistles could be constructed 

with Br = O. but accounting for the initial phase difference between harmonics causes 

the synthetic whistle to more closely resemble the recorded whistle in the time do

mam. 

Fig. 4-7 compares the recorded and synthetic time domain representations for 

Whistle 1. Fig. 4-8 compares the spectrograms for the recorded and synthetic versions 

of Whistle 1. In-air playbacks using Matlab demonstrate that the synthetic whistle 

is almost indistinguishable from the recorded whistle. However, the sinusoidal model 

does not account for any stochastic 'noise-like' portions of the whistle, such as seen 

surrounding the fundamental frequency contour at the end of Whistle 1 in Fig. 4-8. 

Other dolphin whistles should be studied to determine whether this type of stochastic 

effect is actually produced by the dolphin. 

Figs. 4-9 through 4-12 show the fundamental frequency and amplitude contours 

for \Vhistles 2 and 3 in Fig. 4-1. Each successive whistle has a longer duration and is 

characterized by increasingly stable frequency and amplitude contours. The residual 

I\ISE for \Vhistles 2 and 3 is shown in Fig. 4-13 and Fig. 4-14. Both Whistle 2 and 3 

have a lower residual MSE than Whistle 1, as expected based on the stability of the 

frequency and amplitude contours. Each whistle has a higher residual MSE when the 

fundamental frequency is rapidly increasing toward the end of the whistle. 
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4.2 Watermarked Synthetic Whistle Calls 

In a covert communications scenario, a blind watermark detection scheme is generally 

desired, in which the host signal is not needed for watermark retrieval. Due to the 

sensitivity of the HAS, a parametric watermark that produces a natural-sounding 

stego-signal provides the best opportunity for passing embedded information with

out alerting observers to the existence of the information. The harmonic frequency 

contours are chosen as the parameter set to be watermarked based on the strong 

performance of the sinusoidal model of Eq. (4.1) in representing recorded bottlenose 

dolphin whistle calls. In order to produce natural-sounding whistles using a retriev

able watermark, the harmonic relationship between frequency contours should be 

maintained. Thus, different schemes for watermarking the fundamental frequency 

contour of a synthetic whistle should be considered in terms of the ease of watermark 

detection and retrieval and the naturalness of the resulting stego-signal. 

The fundamental frequency contour regularly fluctuates about its instantaneous 

mean that can be described as a vibrato in the frequency contour. Instead of adding 

distortion on top of the observed vibrato, watermark retrieval can be enhanced by 

watermarking the instantaneous mean frequency (IMF) contour, hMF' which is as

sumed to be the original frequency contour if the vibrato effect did not occur. The 

vibrato can be thought of as a stochastic vibration or watermark fw added to the 

smoothed frequency contour fIlyl F, so that 

fdl] = hMF[l] + fw[l], for 1:S l :S L. ( 4.2) 

Since the natural bottlenose dolphin whistles consist of distorted frequency contours, 

there is a good chance that robust watermarking methods can be utilized to produce 

natural-sounding synthetic whistles. However, if the watermark is too natural, it may 

be difficult to distinguish between natural and synthetic whistles. 

The I"\tlF contour is found as the weighted time-average of the fundamental fre-
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Figure 4-15: Impulse response of moving-average filter 

quency contour usmg a movmg-average filter with the impulse response shown in 

Fig. 4-15. The observed bottlenose dolphin whistle vibrato occurs with an average 

period of roughly 1 msec, so the effective impulse response length of the filter is cho

sen to be about 1 msec. The resulting moving-average filter gives equal weight to 

local frequency estimates while giving consideration to more distant values in order 

to smoothly estimate the IMF. The Matlab command filtfilt [45] is again used 

to perform zero-phase filtering. The fundamental frequency and IMF contours for a 

portion of Whistle 2 are shown in Fig. 4-16. 

In a covert communications scenario, it would be desirable to be able to retrieve the 

watermark under relatively low SNR conditions, such as SNR = 5 dB. This requires 

a relatively robust watermarking scheme that facilitates watermark retrieval even 

when frequency estimation performance is relatively bad. Liu's F-QIM watermarking 

scheme [38], which is based on detecting the difference between separate frequency 

quantizers, would require either large frequency deviations between quantizer levels 
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Figure 4-16: Fundamental frequency and IMF contours for a portion of Whistle 2 in 
Fig. 4-1 

or high SNR to ensure robust watermark retrieval due to the frequency estimation 

performance. The remainder of this chapter considers two watermarking schemes that 

are relatively robust for a range of SNR. The first scheme constructs a watermark 

composed of linear chirp segments separated by an abrupt frequency shift. The second 

scheme constructs a watermark that simulates the natural vibrato of the fundamental 

frequency using continuous-phase modulation (CPM). 

4.2.1 Linear Chirp Segments With Abrupt Frequency Shifts 

The goal of most communications systems is to maximize the achievable data rate 

for which transmitted information can be reliably decoded. This implies that each 

information bit will correspond to a minimal number of samples in the transmitted 

signal Thus, from the perspective of data rate, an optimal frequency watermarking 

scheme will have a relatively low number of samples per information bit available for 
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frequency estimation. Increasing the sample rate at the receiver will also generally 

improve frequency estimation performance by providing more samples per information 

bit, but it is assumed fixed when choosing a watermarking scheme. At low SNR, 

small changes in the frequency contour may be obscured by the increased frequency 

estimation variance, making robust QIM-based watermarking schemes unattractive 

in terms of perceptual distortion of the host signal. To improve frequency estimation 

performance and limit perceptual distortion, the IMF contour should be watermarked 

with a generally smoothly-varying signal that can be tracked over time using the 

HTLS frequency estimator or other frequency estimators. 
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Figure 4-17: vVatennarking scheme based on linear chirp segments with abrupt fre
quency shifts 

A potential watermarking scheme, portrayed in Fig. 4-17, approximates the IMF 

contour using linear chirp segments with abrupt frequency shifts !:If. The water

mfLrked information is encoded in the amount of time between abrupt frequency 

shifts, !:lto and !:lt1 . The slope of each linear chirp segment is chosen to achieve a fre-
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quency separation of 6j from the IMF contour after a duration 6to or 6t1 specified 

by each information bit. The synthetic stego-signal is then constructed according to 

Eq. (4.1) using the watermarked fundamental frequency contour and the amplitude 

contours estimated using the original fundamental frequency contour estimate. An 

alternative to the watermarking scheme in Fig. 4-17 is to tag the midpoint instead of 

the initial point of each linear chirp segment to the IMF contour. 

Fig. 4-18 shows the linear chirp watermarked fundamental frequency contour based 

on Whistle 2 of Fig. 4-1. The watermarked contour was constructed using a random 

information bit stream and the parameters 6j = 150 Hz, 6to = 1 msec and 6t1 = 2 

msec. In-air playbacks using Matlab demonstrate that there is a small perceptible 

difference between the recorded and watermarked synthetic whistles. The parameter 

that most effects the perceptible distortion of the host signal is the frequency shift, 

6j. At relatively high SNR, the frequency estimation performance will be improved, 

and thus require a smaller 6j for reliable watermark retrieval. As SNR decreases, 
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Figure 4-18: Linear chirp watermarked frequency contour of Whistle 2 in Fig. 4-1 
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the frequency estimation variance increases, and a larger 6.f is needed to differenti

ate between an actual frequency shift and estimation error. Watermark retrieval is 

performed by detecting abrupt frequency shifts in the fundamental frequency contour 

of the received whistle. 

4.2.2 Continuous Phase Modulation 

Due to the inherent vibrato observed in the bottlenose dolphin whistle calls, an alter-

native to the linear chirp watermarking scheme is to embed information in a synthetic 

vibrato using continuous phase modulation (CPM) as shown in Fig. 4-19. CPM sig

nals [52] have a continuous carrier pha'3e 

n 

¢(t;I) = 21f ~ hhkq(t - kT), nT::; t::; (n + l)T (4.3) 
k=-oo 

where {Ik} is a sequence of .A1-ary information symbols selected from the alphabet 

±1, ±3, ... , ±(JVJ - 1), {hd is a sequence of modulation indices, and q(t) is some 

normalized waveform shape. While many types of CPM could be used to construct a 

synthetic whistle vibrato, a simple type called minimum-shift keying (MSK) can be 

used to illustrate a watermarking scheme using CPM. 

+ 

IKST AKT ANEOUS MEAN 
FREQUENCY CONTOUR 

CPM 
WATERMARK 

WATERMARKED 
FREQUENCY CONTOUR 

Figure 4-19: Watermarking scheme based on CPM perturbation of the I~1F contour 
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MSK is a special form of binary CPM in which the modulation index h = ~ and 

normalized waveform shape 

o (t < 0) 

q(t) = t/2T (0 ~ t ~ T) . ( 4.4) 

1/2 (t > T) 

The phase of the MSK carrier in the interval nT ~ t ~ (n + l)T is 

1 n-l 

¢(t; I) = 21T L h + 1T Inq(t - nT) 
k=-co ( 4.5) 

1 (t -nT) = en + 21T In T ' nT ~ t ~ (n + 1 )T, 

where 

h . ( 4.6) 
k=-co 

The modulated MSK carrier signal with amplitude A and carrier frequency Ic is 

s(t) = A cos [21T Jct + en + }1T In (t -TnT) ] 

= Acos [21T(Ic + 4~In)t - }n1TIn + en], nT ~ t < (n + 1)T. 

(4.7) 

From Eq. (4.7), it can be seen that for each interval nT ~ t ~ (n + 1 )T, MSK can be 

thought of as having one of two frequencies, 

(4.8) 

with an adjusted phase to achieve a continuous phase across all intervals. 

The synthetic vibrato signal Jw [l] can be constructed by sampling Eq. (4.7) at 

84 



the points t = II fs with a carrier rate of fe = liT, 

( 4.9) 

where {In} is a sequence of binary information symbols ±1. The CPM watermarked 

fundamental frequency contour is 

fCPM[l] = hMF[l] + fw[l]. 1 < l < L. ( 4.10) 

Fig. 4-20 shows both the unmodified and CPM-watermarked fundamental fre

quency contours for a portion of Whistle 2 in Fig. 4-1, where fCPM is constructed 

using the parameters A = 50 Hz and T = 1 msec. The main distinguishing feature 

between the two fundamental frequency contours is that the watermarked contour 

vibrato has a constant amplitude &'3 opposed to the variable strength vibrato in the 

252 
F 1 

250 --FCPM 

248 

246 
~ 

L' 
Q) 
if) 

g 244 
Q) 

E 
F 

242 

240 

238 

236 
94 9.5 96 

=-~-
............ ..<::::='"'". ,-,:~..c..--=:=--: ... 

97 

Frequency (kHz) 
98 99 10 

Figure 4-20: Unmodified and CPM-watermarked frequency contours for a portion of 
Whistle 2 in Fig. 4-1 
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recorded whistle. In-air playbacks using Matlab demonstrate that the watermarked 

whistle, constructed from Eq. (4.1) using the unmodified amplitude contour estimates, 

is essentially imperceptible from the recorded whistle, with the exception of slight 

background noise in the recorded whistle. Proakis [52] covers CPM demodulation 

methods that can be used for watermark retrieval after estimating the fundamental 

frequellcy contour of the received whistle. 
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Chapter 5 

Experimental Results 

This chapter presents results from the Rescheduled Acoustic Communications Ex

periment (RACE08) conducted in Narragansett Bay during March 2008. Synthetic 

whistle calls based on the bottlenose dolphin whistle call in Fig. 4-1 were transmit

ted throughout the experiment. The frequency estimation performance of the HTLS 

algorithm is demonstrated for both natural and watermarked frequency contours. 

5.1 RACE08 Description 

RACE08 was conducted at the University of Rhode Island's Narragansett Bay Cam

pus, shown in Fig. 5-1, from March 1st through March 25th. Acoustic signals were 

transmitted from a stationary tripod located roughly 100 meters from shore in water 

depth of 9 meters. The primary source transducer, an ITC-1007 spherical transducer 

with resonant frequency of approximately 11kHz, was located about 4 meters from 

the sea floor. A source array composed of three Datasonics AT-12ET transducers, lo

cated beneath the ITC-1007, was not used for transmitting synthetic whistles. Three 

main receiver array tripods were located roughly 400 meters to the East, 400 meters 

to the North, and 1000 meters to the North of the source array tripod. The 400 meter 

receiver arrays were composed of 24 elements with 5 cm spacing. The 1000 meter 
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Figure 5-1: University of Rhode Island's Narragansett Bay Campus 

receiver array was composed of 12 elements with 12 em spacing. The bottom element. 

of each receiver array was located 2 meters above the sea floor. The water depths 

between source and receiver arrays ranged from 9 to 14 meters. A reference ITC-100 

hydrophone was mounted 1 meter from the ITC-1007 source transducer. The sample 

rate of the transmitter and all receivers was 39062.5 Hz (le7/256). 

5.2 RACE08 Results 

Synthetic whistle calls, based on the bottlenose dolphin whistle call in Fig. 4-1, were 

transmitted on the ITC-1007 source transducer at two hour intervals throughout 

the RACE08 experiment. The results presented here, taken from the 8:00 P.M. EDT 

transmission on March 23rd, were chosen for relatively calm environmental conditions 

in Narragansett Bay. 

Fig. 5-2 compares spectrograms of unmodified synthetic whistle calls received at 
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Figure 5-2: Spectrograms of unmodified synthetic whistle calls received at the refer
ence (left) and ;\'1000 (right) hydrophones (dB) 

the reference and :\orth 1000 meter (NI000) hydrophones. The reference hydrophone 

records the whistle call without multipath or intersymbol interference (lSI), while the 

}\;'lOOO hydrophone sees an impulse response of length greater than 0.5 seconds. The 

relatively long impulse response is due to strong refiections from shore in the narrow 

channel. 

Fig. 5-3 compares spectrograms of watermarked synthetic whistle calls received 

at the reference and :.J1000 hydrophones. The watermarking scheme was similar to 

that portrayed in Fig. 4-17, except that the frequency was held constant for each 

information bit, resulting in a variable abrupt frequency shift 6.1. The parameters 

6.to = 10.2 msec and 6.tJ = 20.4 msec were chosen for initial testing to ensure 

frequency estimation and watermark retrieval could be demonstrated. The presence of 

the watermark is clearly seen at the NI000 hydrophone in Fig. 5-3, since the multi path 

energy only appears at discrete frequencies determined by the watermarking scheme. 
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Figure 5-4: Reference hydrophone recording of unmodified Whistle 3 in Fig. 5-2 
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Fig. 5-4 shows the third whistle (Whistle 3) from Fig. 5-2 as recorded by the 

reference hydrophone. Due to the frequency response of the ITC-1007 transducer, 

the amplitude of Whistle 3 varies in time as the frequency changes. The rest of this 

chapter examines the frequency estimation performance of the HTLS algorithm for 

both unmodified and watermarked versions of Whistle 3. 

Fig. 5-5 compares the frequency estimation performance for both unmodified and 

watermarked versions of Whistle 3 received by the reference hydrophone, using the 

parameters). = 1, !vI = 101, and p = 2. A major drawback of this watermarking 

scheme is that when the unmodified frequency contour is relatively constant, there is 

little frequency separation between information bits, and watermark retrieval requires 

excellent frequency estimation. By using linear chirp segments with abrupt frequency 

shifts £1f, robust watermark retrieval is possible independent of the unmodified fre-

quency contour. 

34 ~ 3'1..:, 5~~""'1 ':-4 ----:1=-=4'-;, 5'---71 ==-5 ----:l:-dS , 5 

Frequency (kHz) 

34 ~ 3'''', 5,----:;'14':-----::1:-::'4'-;:, 5'---~1 5;:-----::1-:::!5, 5 

Frequency (kHz) 

Figure 5-5: Frequency estimation performance for unmodified (left) and watermarked 
(right) whistle contours received at reference hydrophone 
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Fig. 5-6 compares the frequency estimation performance for both unmodified and 

watermarked versions of Whistle 3 received by the I\1000 hydrophone, using the 

parameters). = 1, M = 101, and p = 2R with up to 3 harmonics. The effect of lSI is 

combatted by increasing the model order to account for major peaks in the impulse 

response, yielding good frequency estimation of the transmitted contour. However. 
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Figure 5-6: Frequency estimation performance for unmodified (left) and watermarked 
(right) whistle contours received at NlOOO hydrophone 

overestimating the model order harms the frequency estimation performance, so p 

was manually adjusted to account for the onset of strong multipath arrivals. 

Fig. 5-7 and Fig. 5-8 show the complete estimated frequency contours for unmod

ified and watermarked versions of Whistle 3 received by the N1000 hydrophone. As 

seen in Fig. 5-7, lSI can cause sudden spurious frequency estimation results. Dis

counting the outliers in Fig. 5-7, the standard deviation of the unmodified whistle 

frequency estimate is 21.6 Hz, while the standard deviation of the watermarked fre

quency estimate is 20.8 Hz. 
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Figure 5-7: Frequency estimation performance for unmodified whistle contour re
ceived at NI000 hydrophone 
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Figure 5-8: Frequency estimation performance for watermarked whistle contour re
ceived at NI000 hydrophone 
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Although the distortion due to lSI presents a challenge to watermark retrieval, 

it can be overcome in mild environmental conditions with clearly defined multipath 

arrivals by appropriately increasing the model order used in frequency estimation. 

In severe environmental conditions, where the multipath arrivals reflected off surface 

waves are less clearly defined, the frequency estimation performance will degrade. 

Further testing with the watermarking schemes presented in Section 4.2 should be 

performed in various environmental and bathymetric conditions to establish the op

erationallimits on robust watermark retrieval. 
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Chapter 6 

Conclusions and Future Directions 

The work presented in this thesis develops a method for high-resolution modeling 

of marine mammal whistle calls that can be used to generate natural sounding syn

thetic whistles for biologica.l research or covert communications. Although J\1cAulay 

and Quatieri [46] reported good results in applying their human speech processing 

sinusoidal model to the synthesis of whale sounds, their technique was based on a 

block-by-block estimation of slowly-varying parameters. By applying a relatively 

short sliding window with hop size of H = 1, the quickly-varying parameters of 

chirp signals can be accurately estimated. Essentially, higher resolution estimates 

are found for the fundamental frequency and amplitude contours used by Buck et 

al. [5] in the modification and synthesis of bottlenose dolphin whistle calls. Due 

to the sensitivity of the HAS, the optimal scheme for watermarking marine mam

mal whistle calls is based on slight imperceptible modifications of the fundamental 

frequency contour. High-resolution frequency estimation is essential for producing 

natural sounding stego-signals that are robust to channel-induced signal distortion 

and additive ambient noise. 

An interesting result, previously unknown due to the lower resolution of other tech

niques, is that the bottlenose dolphin whistles exhibit an inherent fluctuating vibrato 

of the fundamental frequency contour, presumably due to the physical mechanism 
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for generating whistles. A typical vibrato of the bottlenose dolphin fundamental fre

quency, ranging from 6 to 22 kHz, has a period of 1 msec with a magnitude from 50 to 

100 Hz. The presence and resolvability of the inherent vibrato naturally lead to wa

termarking the instantaneous mean fundamental frequency contour with a synthetic 

vibrato using CPM signals. 

Directions for future work can be divided into two categories: updating the ex

isting model to better describe marine mammal whistle generation and addressing 

operational a.'3pects of a covert communications system. The major distinction be

tween these categories is that modeling can performed offline at ideal SNRs, while a 

covert communications system will optimally operate online at degraded SNRs. 

Accurate modeling of marine mammal whistle calls requires high-quality record

ings with a high SNR and sufficient sample rate to capture the desired harmonics 

without aliasing. The custom built suction cup hydrophone, used in the Sarasota 

Bottlenose Dolphin Whistle Catalog to record whistles during brief capture-release 

events, provides recordings with excellent SNR. For the whistle recording studied in 

this thesis, the high frequency harmonics are cutoff above 40 kHz. Optimal recordings 

should use a high enough sample rate to resolve the desired harmonics and employ 

anti-aliasing filters to limit whistle distortion. A large number of bottlenose dolphin 

whistle calls should be analyzed to determine characteristic modulations of the fre

quency and amplitude contours. If these characteristics can be accurately modeled, 

natural sounding whistles can be generated from scratch, without requiring a whistle 

recording to develop frequency and/or amplitude contours. The existing sinusoidal 

model could be updated to include components of the whistles that are not confined 

to narrow band harmonics. The apparent stochastic effects of the whistles, such as 

during the attack or final phases of the whistles, could be modeled in a similar fash

ion as Levine's sinusoid+noise+transient model [36]. Finally, the bottlenose dolphin 

vocal tract could be modeled to improve the sinusoidal synthesis model, as shown in 

Fig. 1-1. 
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One of the drawbacks for using the HTLS algorithm to track fundamental fre

quency contours in a covert communications system is the high computational load 

required to obtain a frequency estimate for each sample. A recursive implementa

tion of the weighted HTLS algorithm, using an appropriate forgetting factor A to 

discard old data, would greatly improve the algorithm's computational load for real 

time applications. Liang [37] discusses using the SVD-update algorithm of Bunch 

and Nielsen [7] after calculating the initial SVD to reduce the computational loading 

of sequential chirp parameter estimation. Taking advantage of the state-space model 

utilized in the HTLS algorithm, an extended Kalman filter [22] could be developed to 

track parameter changes throughout a whistle call. It would be beneficial to develop 

a more robust way to deal with channel-induced lSI, such as using the Expectation

Maximization (EM) algorithm [48] to estimate channel conditions and performing 

channel equalization prior to frequency estimation. It could also turn out that other 

frequency estimators, such as Quinn's FTI frequency estimator, are a better choice 

than the HTLS algorithm for watermark detection and retrieval. Quinn [55] com

bines FTI frequency estimation with a Hidden Markov IVlodel (HMM) to track slowly 

varying frequencies at low SNR. HMl'vls could be developed to improve freequency 

tracking of marine mammal whistle calls at low SNR. 

Different watermarking schemes should be tested and compared in terms of their 

ability to produce natural sounding synthetic stego-signals, potential achievable data 

rates, and watermark detection and retrieval performance. While this thesis focused 

on the frequency of estimation of a single marine mammal whistle call, an operational 

environment at sea will often include actual marine mammal whistle calls in addition 

to the synthetic stego-signal. Sturtivant and Datta [67] have looked at extracting 

whistle contours from recordings of several dolphins. An eventual covert communica

tions system will most likely need to be able to overcome acoustic interference from 

biologics that respond to the natural sounding stego-signals. 
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Appendix A 

Prony's Derivation of the Linear 

Prediction Equations 

Prony demonstrated that the nonlinear aspects of Eq. (2.3), 

p 

x[n] = L hkZ~-] (A.I) 
k=] 

can be embedded into a polynomial factorization problem [43]. He showed that the 

poles Zk can be resolved separately from the parameters hkl which can then be found 

by solving Eq. (2.6). The key to the separation is to recognize that Eq. (A.1) is the 

solution to a homogeneous linear constant-coefficient difference equation. In order to 

find the form of this difference equation, first define the polynomial ¢( z) that has the 

poles Zk as its roots, 
p 

¢(z) = IT (z - Zk) (A.2) 
k=l 

If the products of Eq. (A.2) are expanded into a power series, the polynomial may be 

represented as the summation, 

p 

¢(z) = L w[rn]zp-m (A.3) 
m=(J 
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with complex coefficients w[rn] such that w[O] = 1. Shifting the index in Eq. (A.1) 

from n to n - rn and multiplying by the parameter w[rn] yields 

p 

w[rn]x[n - rn] = w[rn] L hkZ~l-m-l (A.4) 
k=] 

Forming similar products w[O]x[n], ... ,w[p]x[n - p] and summing produces 

p p p 

L w[rn]x[n - rn] = L w[m] L hkZ~-7n-l 
m=O m=O k=1 

p p 

= L hk L w[rn]z~-m-l (A.5) 
k=1 m=O 

h · h . l'd f 1 2 1\"- k' 1 l' . n-rrt-l n-p-l p-rrt W lC IS va] or p + :S n:S p. 'la mg t le su )stltutlOn Zk = Zk Zk' 

p p p 

L w[rn]x[n - rn] = L hkZ~-P-] L w[rn]zr,-m 
rn=O k=1 m=O 

(A.6) 

Eq. (A.6) is the linear difference equation whose homogeneous solution is given by 

Eq. (A.1). Eq. (A.3) is the characteristic equation associated with this linear differ-

ence equation. The set of valid linear prediction equations is expressed as 

x[P] x[p - 1] x[l] w[l] x[p + 1] 

x[p + 1] x[P] x[2] w[2] x[p+2] 
(A.7) 

x[2p - 1] x[2p - 2] x[P] w[p] x [2p] 

Although it is derived from different assumptions, the modern Prony's method, which 

accounts for error in the model, is equivalent to the covariance method of linear 

prediction [41]. 
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